

Midwest Geological Sequestration Consortium

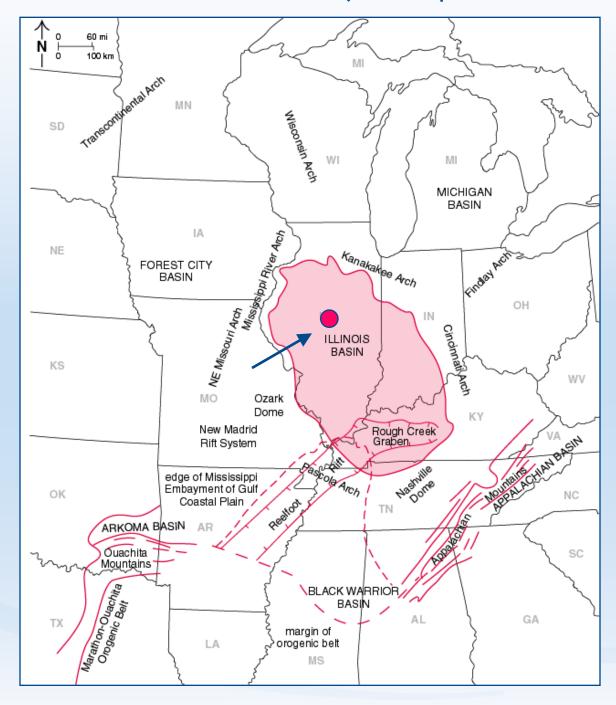
Midwest Geological Sequestration Consortium: Highlights from the Illinois Basin – Decatur Project

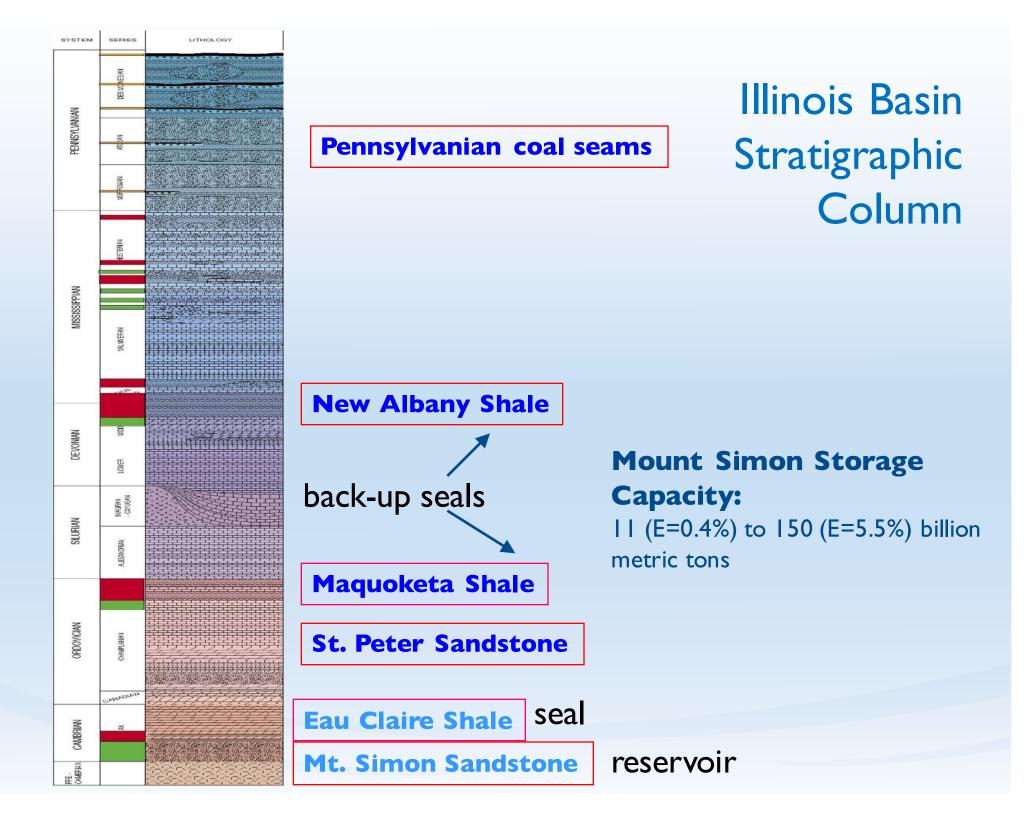
Sallie E. Greenberg, Ph.D. Midwest Geological Sequestration Consortium University of Illinois – Illinois State Geological Survey

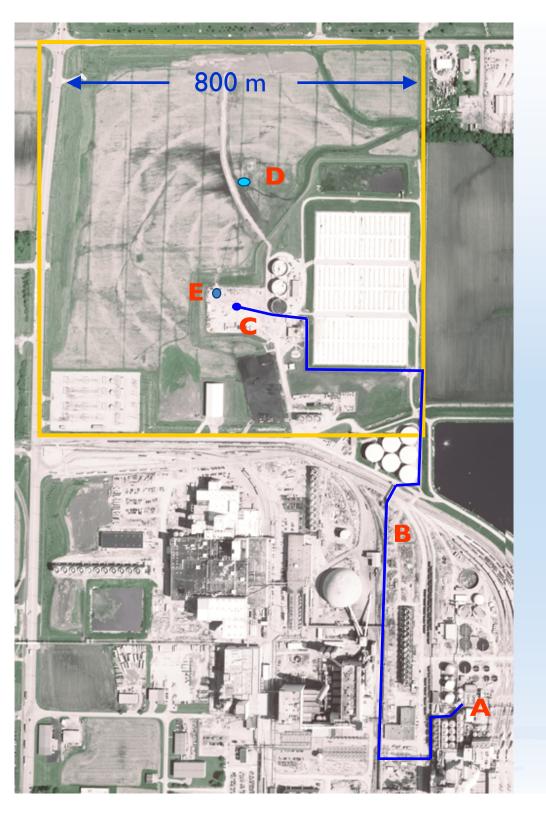
18 August 2016 – Champaign, Illinois

Acknowledgements

- The Midwest Geological Sequestration Consortium is funded by the U.S. Department of Energy through the National Energy Technology Laboratory (NETL) via the Regional Carbon Sequestration Partnership Program (contract number DE-FC26-05NT42588) and by a cost share agreement with the Illinois Department of Commerce and Economic Opportunity, Office of Coal Development through the Illinois Clean Coal Institute.
- The Midwest Geological Sequestration Consortium (MGSC) is a collaboration led by the geological surveys of Illinois, Indiana, and Kentucky.
- Landmark Graphics software via their University Donation Program and cost share plus Petrel software via Schlumberger Carbon Services.






Illinois Basin – Decatur Project Scope

A collaboration of the Midwest Geological Sequestration Consortium, the Archer Daniels Midland Company (ADM), Schlumberger Carbon Services, and other subcontractors to inject I million metric tons of anthropogenic carbon dioxide at a depth of 7,000 +/- ft (2,000 +/- m) to test geological carbon sequestration in the Mt. Simon Sandstone, a saline reservoir, at Decatur, IL

- Prove injectivity and capacity
- Demonstrate security of injection zone
- Contribution to best practices

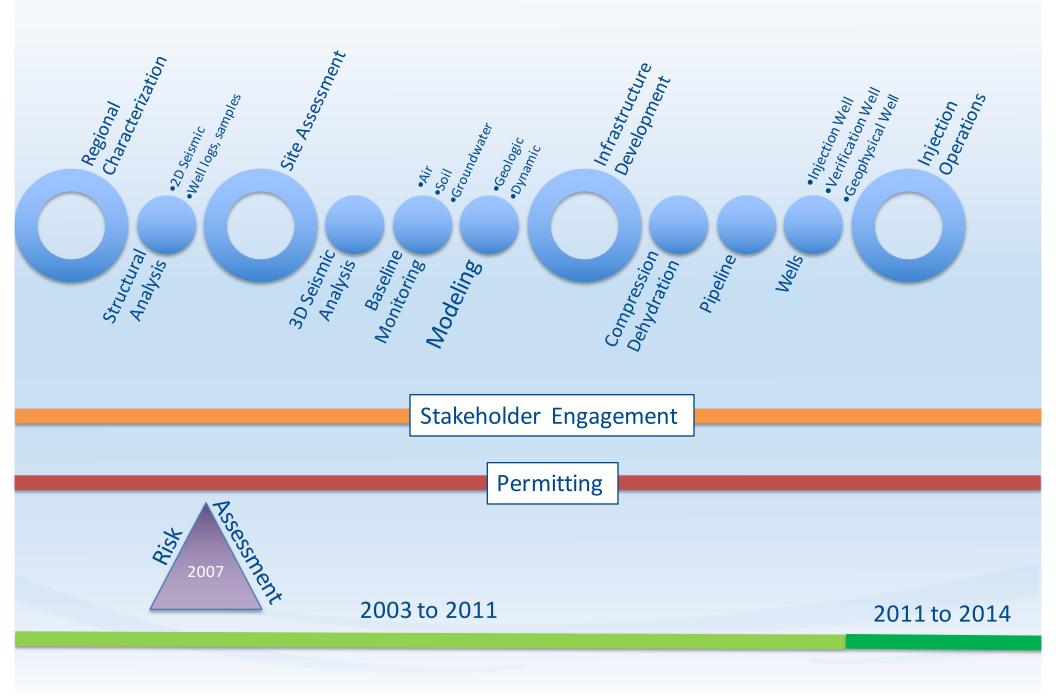
Illinois Basin – Decatur Project Site (on ADM industrial site)

- A Dehydration/ compression facility location
- B Pipeline route (1.9 km)
- C Injection well site
- D Verification/ monitoring well site
- E Geophone well

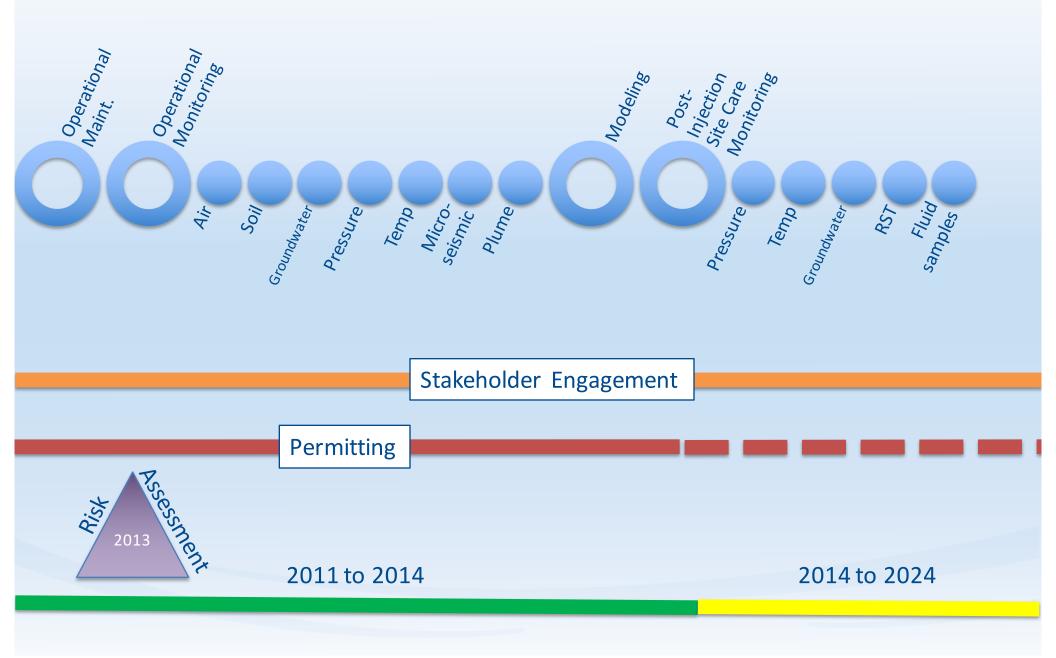
Operational Injection: November 2011 to 2014

- IBDP is the first I million tonne carbon capture and storage project from a biofuel facility in the US
- Intensive post-injection monitoring under MGSC through 2017
- Industrial CCS Injection Monitoring through 2019

Total Injection: 999, 215 tonnes


Illinois Basin – Decatur Project Workflow

- Regional Characterization
- Site assessment
- Outreach and public engagement
- Permitting and building the IBDP test site
- Collect and analyze key monitoring baseline data
- Injection, monitoring, and modeling
- Post-injection monitoring, modeling, and analysis
- Research collaborations, knowledge sharing
- Compliance monitoring period



Current activities

Development of a CCS Project

Development of a CCS Project

Statement of Project Objectives (SOPO)

Task	Scope	Status (% Complete)	Open Subtasks (<i>n)</i>
1	Regional Characterization	100	1 of 12
2	Public Outreach and Education	70	2 of 6
3	Permitting and NEPA Compliance	90	1 of 11
4	Site Characterization and Modeling	90	2 of 14
5	Well Drilling and Completion	100	0 of 5
6	Infrastructure Development	100	0 of 12
7	CO ₂ Procurement	100	0 of 1
8	Transportation and Injection Operations	100	0 of 3
9	Operational Monitoring and Modeling (MMV/MVA)	100	0 of 6
10	Site Closure	100	Define as needed
11	Post Injection Monitoring and Modeling	20	1 of 5
12	Project Assessment	30	2 of 2
13	Post-Test Site Planning	50	1 of 1
14	Project Management	70	2 of 2

Statement of Project Objectives (SOPO)

	Task	Scope	Status (% Complete)	Open Subtasks (<i>n)</i>
	1	Regional Characterization	100	1 of 12
	2	Public Outreach and Education	70	2 of 6
	3	Permitting and NEPA Compliance	90	1 of 11
	4	Site Characterization and Modeling	90	2 of 14
Γ	5	Well Drilling and Completion	100	0 of 5
	6	Infrastructure Development	100	0 of 12
	7	CO ₂ Procurement	100	0 of 1
	8	Transportation and Injection Operations	100	0 of 3
	9	Operational Monitoring and Modeling (MMV/MVA)	100	0 of 6
	10	Site Closure	100	Define as needed
	11	Post Injection Monitoring and Modeling	20	1 of 5
	12	Project Assessment	30	2 of 2
	13	Post-Test Site Planning	50	1 of 1
	14	Project Management	70	2 of 2

Statement of Project Objectives (SOPO)


Task	Scope	Status (% Complete)	Open Subtasks (<i>n)</i>	
1	Regional Characterization	100	1 of 12	
2	Public Outreach and Education	70	2 of 6	
3	Permitting and NEPA Compliance	90	1 of 11	
4	Site Characterization and Modeling	90	2 of 14	
5	Well Drilling and Completion	100	0 of 5	
6	Infrastructure Development	100	0 of 12	
7	CO ₂ Procurement	100	0 of 1	
8	Transportation and Injection Operations	100	0 of 3	
9	Operational Monitoring and Modeling (MMV/MVA)	100	0 of 6	
10	Site Closure	100	Define as needed	
11	Post Injection Monitoring and Modeling	20	1 of 5	
12	Project Assessment	30	2 of 2	
13	Post-Test Site Planning	50	1 of 1	
14	Project Management	70	2 of 2	

Post-Injection Activities (Since November 2014)

- Post-injection near surface and deep monitoring
- Post-injection modelling and data evaluation
 - 3D Surface Seismic Survey 2015
 - Post-injection VSP (permit interim period) 2015
 - RTAC to Well Watcher Migration 2016
 - RecompleteVWI 2016/2017
 - Final static and dynamic models 2016
 - Near-surface monitoring analysis and recommendations 2016
 - Passive/active monitoring project (US-Norway) 2016-2017
 - Peer-reviewed articles, technical and final reports
 - Partnership and project closure
- Knowledge and data sharing best practices
- Preparing IBDP site for long-term commercial viability
- Permit monitoring for ADM Industrial CCS project

Post-injection Monitoring – Locke and Collaborators

- Near-surface comparison with baseline
- Regulatory compliance for the IBDP PISC
- Recommendations for commercial-scale MVA operations based on IBDP experiences

Permitting

IL EPA UIC Class I to

US EPA UIC Class VI

Monitoring Activity	Monitoring Location(s)	Frequency: Interim Period	Frequency: CCS2 Injection Phase	Frequency: CCS2 Post- Injection Phase
Pulsed Neutron Logging / RST	VW1	Once	Year 2, Year 4	Year 1, Year 3, Year 5, Year 7, Year 10
Fluid Sampling	VW1	Once	Year 1-3 : Annual Year 4-5 : None	None
Pressure/ Temperature Monitoring	VW1	Continuous	Year 1-3 : Continuous Year 4- 5 : None	None

VWI Sampling

- Developed procedures and identified critical sample integrity tests
- Developed fluid quality data to characterize deep Illinois Basin brines
- 2013: TDS increase
- 2014-2015: sampling and mitigation efforts
- 2015 results: mitigation not effective

	Swab	WB1	WB2	WB3	WB4	WB5	WB6	WB7	WB8	WB9	WB10
	(5/3/11 - 5/18/11)	(6/15/11 - 7/6/11)	(9/12/11 - 9/19/11)	(3/5/12 - 3/14/12)	(7/12/12 - 7/25/12)	(11/14/12 - 11/15/12)	(2/20/13 - 2/21/13)	(7/11/13 - 7/18/13)	(7/18/14 - 8/4/14)	(9/10/14 - 9/12/14)	(11/8/15- 12/03/15)
Zone											
11	1	1	1	0	1	0	0	2	6	0	2
10	1	2	2	0	3	1	0	2	8	2	1
9	1	1	1	1	1	0	0	0	4	0	2
8	1	2	1	1	1	0	0	0	4	0	2
7	1	3	1	1	0	0	0	0	3	0	2
6	1	1	1	1	1	0	0	2	1	0	2
5	1	1	1	1	1	0	0	2	1	0	1
4	1	3	1	1	2	2	2	2	2	0	1
3	3	1	1	1	0	0	0	0	0	0	0
2	2	1	1	2	0	0	0	0	0	0	0
Source	Source: ISGS and Schlumberger										

Date	Zone	Round	Field Alkalinity (mg/L)	TDS (mg/L)	Br (mg/L)	Cl (mg/L)
07/17/12	9	WB4	86	147,300	476	91,030
08/01/14	9	WB8	84	155,700	489	92,230
11/13/15	9	WB 10	80	150,000	520	89,000
7/19/12	10	WB4	59	91,680	200	54,223
11/14/12	10	WB 5	50	82,030	176	46,550
07/15/13	10	WB7	128	181,800	318	111,200
08/04/14	10	WB8	124	158,800	504	93,710
11/08/15	10	WB 10	76	120,000	390	98,000
7/20/12	11	WB4	30	80,970	150	49,930
07/13/13	11	WB 7	172	138,400	76	76,570
07/22/14	11	WB8	147	156,100	493	93,600
11/08/15	11	WB 10	144	110,000	340	62,000

Recompletion of VWI Monitoring Well

Research priorities:

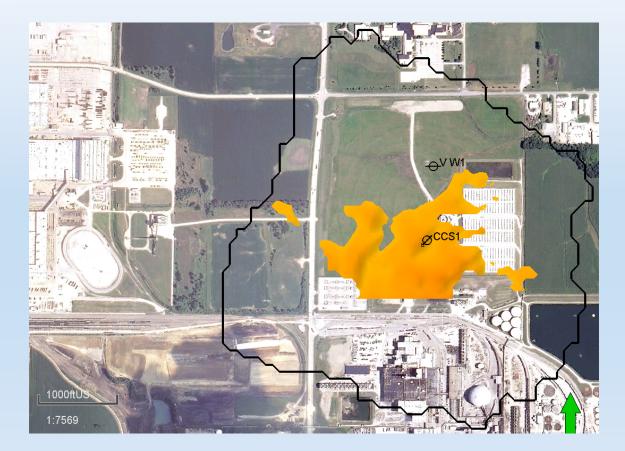
- Monitor injection of multiple plumes within Mt. Simon in order to determine and observe reservoir response via pressure, temperature, geophysical, geomechanical, and geochemical means.
- Demonstrate and test monitoring equipment and methodologies for deployment at the near and deep subsurface through a comprehensive MVA program.
- History match and determine plume development response through active and passive seismic monitoring in order to further understand reservoir microseismic response

Project management priorities:

- Deliver project on-time and within budget
- Reduce short- and long-term risk to project

Permit priorities:

- Perform Injection phase monitoring by fluid sampling in two zones (one in Mt. Simon and one in Ironton/Galesville)
- Perform continuous pressure and temperature monitoring
- Conduct direct and indirect plume monitoring


Post-injection Monitoring – Malkewicz and Collaborators

Remarks VW1 GM1 CCS1 PNX FNXS Comparison Well Completion PNX 2015 GRAT 2014/2015 Preliminary **Evaluation** 2009 August x X Well schematic \checkmark **Pre-injection** 2011 March X Perfs 2011 Packers September **Pre-injection** lops \checkmark \checkmark WB Zones Baseline MD (ft) GRAT 11-15 PN Perfs Zone 1:600 0 B/E CO₂ breakthrough 10 \checkmark \checkmark 2012 March \checkmark Breakthrough 2012 July Monitoring x \checkmark Simon 6800 **Breakthrough** 2012 ž Monitoring November x **Annual Monitoring** 2013 July \checkmark \checkmark 6900 **Annual Monitoring** 2014 July \checkmark \checkmark End of Injection. 2014 December \checkmark \checkmark 2015 7000 November Diagnose VW#1 X X **Planned Regulatory** 2017 TBD X **Planned Regulatory** 2019 TBD x

VW1 11/2015 Pulsed Neutron

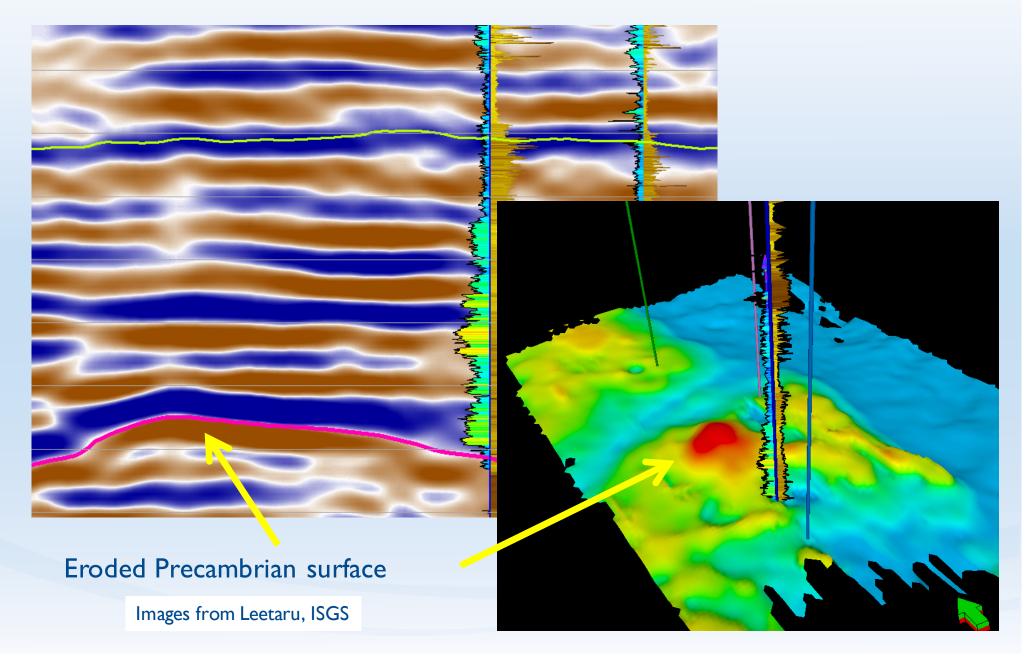
Integration of Modeling Efforts – Zaluski, Will, and Collaborators

- Concurrent IBDP
 Modeling Efforts:
 - Geologic (static)
 - Reservoir
 simulation
 - Geomechanical
 - Coupled hydromechanical

Preliminary consolidated time-lapse attribute interpretation (orange) and outline of modeled plume (black polygon) in Q1 2015.

Recent Publications

- International Journal of Greenhouse Gas Control
 - 4 microseismic papers
- McBride, J.H., Leetaru, H.E., Keach, R.W., II, and McBride, E.I., 2016, Finescale structure of the Precambrian beneath the Illinois Basin: Geosphere, v. 12, no. 2, p. 1–22.
- American Geophysical Union Chapter
- Trimeric cost analysis



1. Introduction

The Illinois Basin - Decatur Project (IBDP) is a United States

mechanisms" are parameterized using rock mechanics theory in which emitted energy characteristics are functions of in situ stress magnitude and orientation, rock properties, displacement distance

Refining Understanding of Precambrian Structure using 3D Seismic Volume – McBride, Leetaru, and Collaborators

Comprehensive view of work done on microseismic activity: Pre- through post-injection – Bauer, Will, and Collaborators

Image provided by Schlumberger Carbon Services

Comprehensive view of work done on microseismic activity: Pre- through post-injection – Bauer, Will, and Collaborators

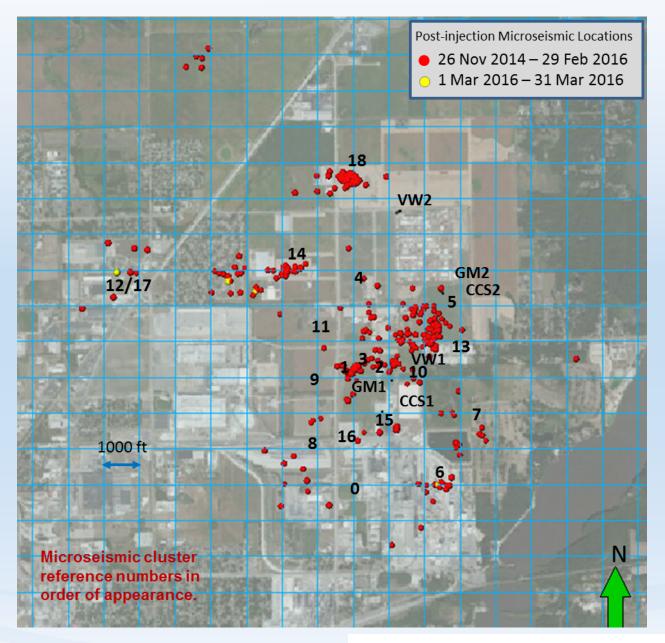
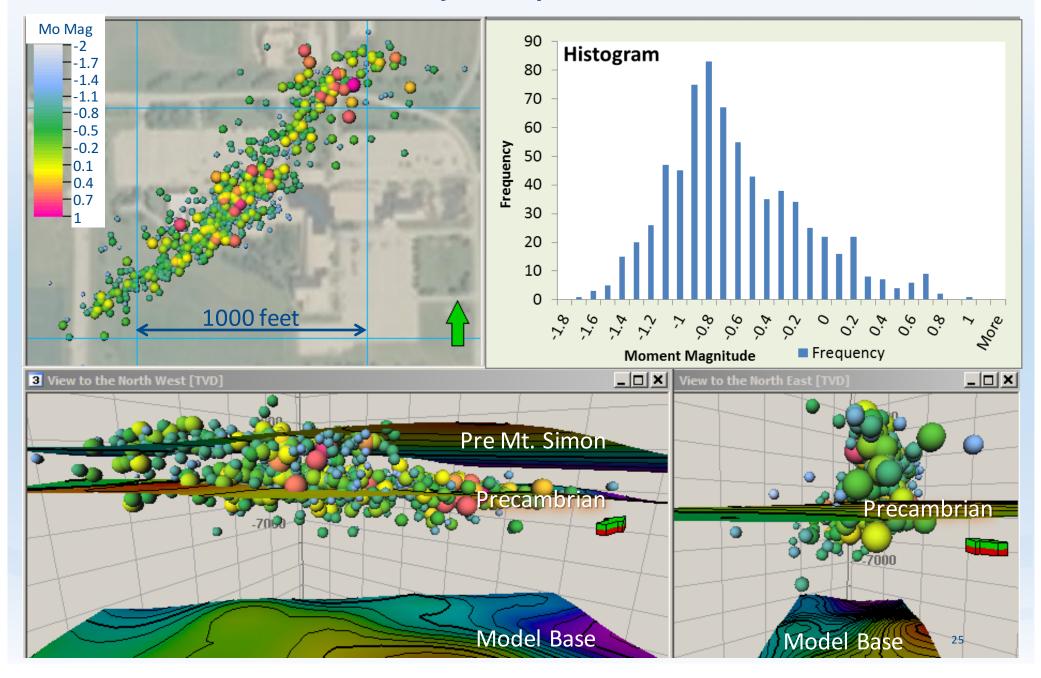
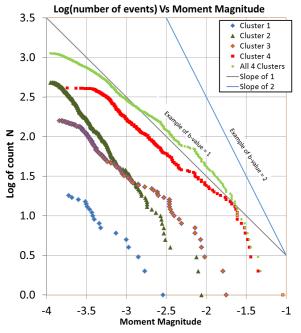
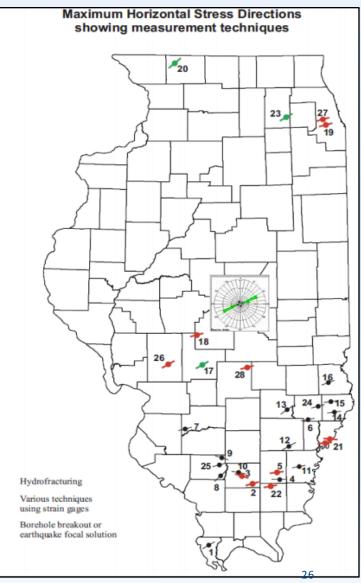



Image provided by Schlumberger Carbon Services


Microseismic Cluster 4 Activity: March 18,2012 – January 2,2013

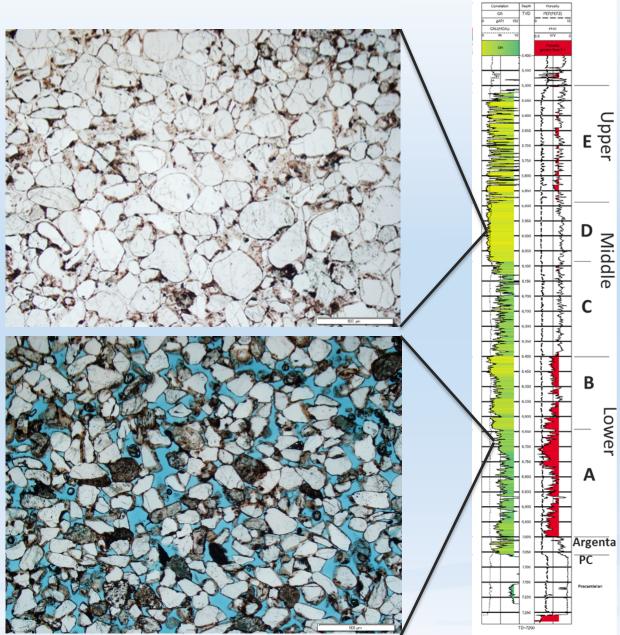
Strike-Slip Event Mechanism "Working Model"

- Gutenberg-Richter analysis on microseismic events suggests tectonic mechanism.
- Cluster orientation consistent with regional and site-specific stress measurements for strike-slip motion.


Gutenberg-Richter

Slope 1: When hydraulic fracture stimulations activate fault systems, a "b-value" or slope of approximately 1 is observed, i.e., a lower number of small events relative to large events. Slope 2: During regular fracking, b-values of 2 is usually observed as the maximum event size is limited

Regional Measurements


IBDP Capital and Operating Costs / Tonne Injected for Compression, Dehydration, and Transmission Facilities

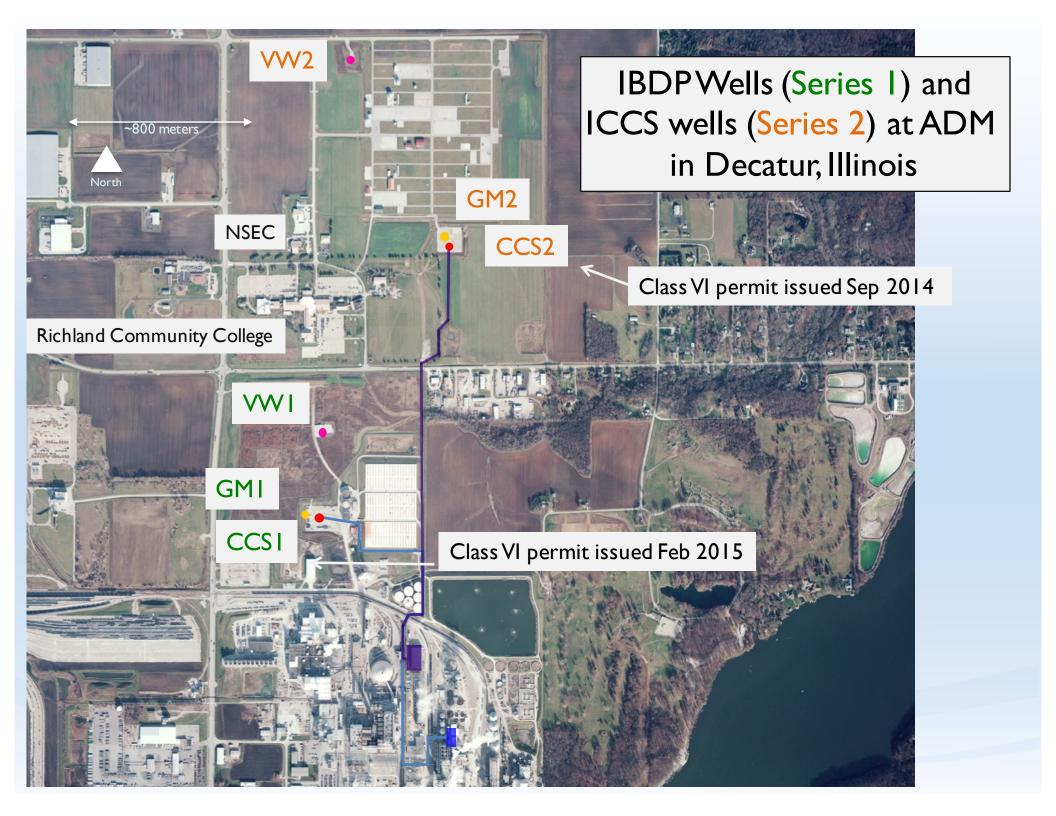
Cost Categories	Costs, (2009 – 2014) US \$ / tonne
Capital Costs	20.34
Electrical Power	7.76
Operating Labor	1.32
Supervisor Labor	0.20
Maintenance	1.22
Other Operating Costs	0.61
Total	31.45

- Important statements regarding this table:
 - Capital costs are amortized over the three-year injection period, amortization period would be much longer on a typical commercial project
 - All costs in this table except for capital costs are derived using typical industry values as actual values are either confidential or not available
 - Host site provided Plant Overhead functions, which would be an additional estimated \$ 2.01 / tonne at a green-field location
 - If scaling costs for future projects, suggest using mid-2010 for capital costs and late-2014 for operating costs

Refined view of Lower Mt. Simon Depositional and Diagenetic History - Freiburg and Collaborators

- Diagenetic controls on reservoir properties
- Depositional interpretation

CCS in Decatur, IL USA

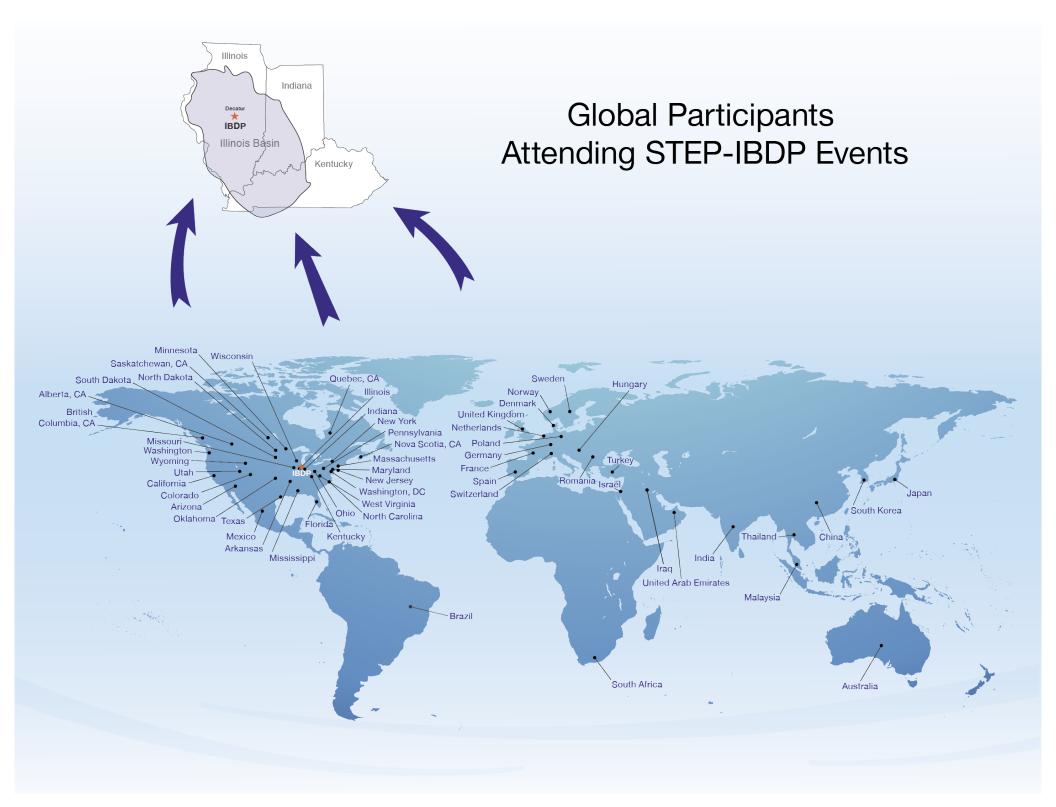


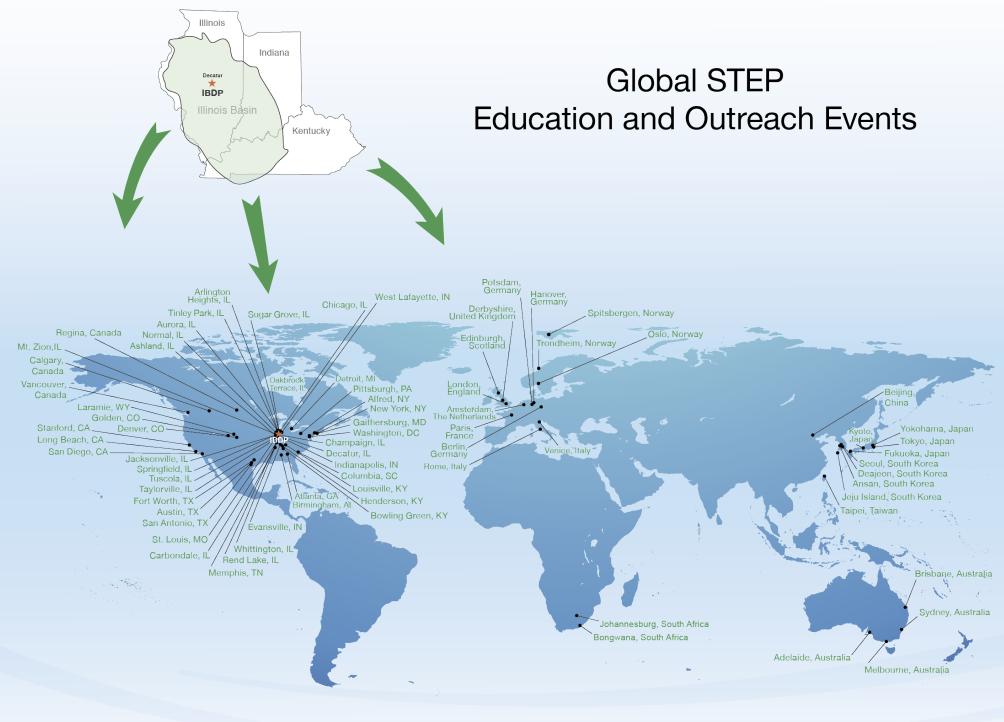
Illinois Basin – Decatur Project

- Large-scale demonstration
- Volume: I million tonnes
- Injection period: 3 years
- Injection rate: 1,000 tonnes/d
- Compression capacity: 1,100 tonnes/day
- Status: Post-injection monitoring

Illinois Industrial CCS Project

- Industrial-scale
- Volume: 5 million tonnes
- Injection period: 3 years
- Injection rate: 3,000 tons/d
- Compression capacity: 2,200 tonnes/day
- Status: Pre-injection monitoring




By the numbers:

- A million tonnes stored and...
- More than 17,000 feet of wells have been drilled
- More than 800 feet of core have been collected
- Near-surface groundwater monitoring efforts have resulted in more than **70,000 analyses**
- For basin-scale modeling, we will use 1,020,000
 CPU-hours of XSEDE supercomputing resources.
- More than 700 visitors from 29 countries have been to IBDP
- More than 100 people at least 10 organizations have worked together to make this project a success

XSEDE is an NSF-sponsored supercomputer network

